Results 1 to 4 of 4

Thread: Life After The Oil Crash

  1. #1
    Senior Member
    lahun-ok's Avatar
    Join Date
    Oct 2004
    Last Online
    Saturday, February 19th, 2005 @ 12:47 PM
    Subrace
    Nordid
    Gender
    Politics
    nationalsocialist
    Religion
    Tiuz
    Posts
    62
    Thanks Thanks Given 
    0
    Thanks Thanks Received 
    1
    Thanked in
    1 Post

    Post Life After The Oil Crash

    Civilization as we know it is coming to an end soon. This is not the wacky proclamation of a doomsday cult, apocalypse bible prophecy sect, or conspiracy theory society. Rather, it is the scientific conclusion of the best paid, most widely respected geologists, physicists, and investment bankers in the world. These are rational, professional, conservative individuals who are absolutely terrified by a phenomenon known as global “Peak Oil.”



    The situation is so dire, even George W. Bush's Energy Adviser, Matthew Simmons, has acknowledged "The situation is desperate. This is the world's biggest serious question."



    Simmons is no environmentalist fearmonger. He's a self-described “lifelong Republican” who has donated generously to Republican political campaigns. His investment bank, Simmons and Company International, is considered the most reputable and reliable energy investment bank in the world.



    Given Simmons’ background, what he has to say about the situation is truly terrifying. For instance, in an August 2003 interview with From the Wilderness publisher Michael Ruppert, Simmons was asked if it was time for Peak Oil to become part of the public policy debate. He responded:



    "It is past time. As I have said, the experts and politicians have no Plan B to fall back on. If energy peaks, particularly while 5 of the world’s 6.5 billion people have little or no use of modern energy, it will be a tremendous jolt to our economic well-being and to our health — greater than anyone could ever imagine."



    When asked if there is a solution to the impending natural gas crisis, Simmons responded:



    "I don’t think there is one. The solution is to pray. Under the best of circumstances, if all prayers are answered there will be no crisis for maybe two years. After that it’s a certainty."



    In May 2004, Simmons explained that in order for demand to be appropriately controlled, the price of oil would have to reach $182 per barrel. With oil prices at $182 per barrel, gas prices would likely rise to $7.00 per gallon.



    To put Simmons’ statements in perspective, consider the fact Osama Bin-Laden believes $200 to be the fair price for a barrel of oil. The phrase, “Politics makes strange bedfellows,” doesn’t quite do this one justice.



    Simmons isn't the only member of the Bush team extraordinarily concerned about Peak Oil. In late 1999, Dick Cheney stated:



    “By some estimates, there will be an average of two-percent annual growth in global oil demand over the years ahead, along with, conservatively, a three-percent natural decline in production from existing reserves.”



    Cheney ended on an alarming note, “That means by 2010 we will need on the order of an additional 50 million barrels a day.” This is six times the amount produced by Saudi Arabia, the world's leading oil producer.



    A report commissioned by Cheney and released in April 2001 was no less disturbing:



    “The most significant difference between now and a decade ago is the extraordinarily rapid erosion of spare capacities at critical segments of energy chains. Today, shortfalls appear to be endemic. Among the most extraordinary of these losses of spare capacity is in the oil arena."



    In May 2001, George W. Bush himself stated, “What people need to hear loud and clear is that we’re running out of energy in America.”
    "MICHAEL MOORE, G. BUSH AND THE SAUDIS ALL IN AGREEMENT? YOU KNOW THE SHI-T HAS FIT THE FAN"

    It's not just members of the Bush Administration who are worried about the ramifications of the oil shocks. In his most recent book, Dude, Where's My Country?, Michael Moore dedicates an entire chapter, "Oil's Well That Ends Well" to the unprecedented suffering the industrialized world will soon endure if people don't wake up to the reality of Peak Oil.



    On a similar note, in a recent issue of the Financial Times, former UK environmental minister Michael Meacher stated,“It's hard to envisage the effects of a radically reduced oil supply on a modern economy or society. The implications are mind-blowing.”



    Even the Saudis have acknowledged the scope of the coming crisis. Publicly, they make dubious assertions the kingdom can meet the world's oil needs for decades to come. Privately, they sing a different tune. They have a saying that goes, "My father rode a camel. I drive a car. My son flies a jet-airplane. His son will ride a camel."



    Anytime George W. Bush, his energy advisor, Dick Cheney, and the Saudis are in complete agreement with Michael Moore and a high ranking environmentalist, it's safe to say the sh_t has hit the fan.

    "ARE WE RUNNING OUT? I HEARD WE HAVE AT LEAST 40 YEARS OF THE STUFF LEFT?"

    The issue is not one of "running out" so much as it is not having enough to keep our economy running. In this regard, the ramifications of Peak Oil for our civilization are simliar to the ramifications of dehydration for the human body. The human body is 70 percent water. The body of a 200 pound man thus holds 140 pounds of water. Because water is so crucial to everything the human body does, the man doesn't need to lose all 140 pounds of water weight before collapsing due to dehyrdration. A loss of as little as 10-15 pounds of water may be enough to kill him.



    In a similiar sense, an oil-based economy such as ours doesn't have to deplete its entire reserves of oil before it begins to collapse. Once the shortfall between demand and supply gets beyond 10-15 percent, all hell is going to break lose.



    To understand the nature of the coming crisis, you need to understand what geologists called the "Hubbert Peak," named for the Shell geologist Dr. Marion King Hubbert who in 1956 accurately predicted that US domestic oil production would peak in 1970.



    All oil production follows a bell curve, whether in an individual field, a country, or on the planet as a whole.



    Oil is increasingly plentiful on the upslope of the bell curve, increasingly scarce and expensive on the down slope. The peak of the curve coincides with the point at which the endowment of oil has been 50 percent depleted. Once the peak is passed, oil production begins to go down while cost begins to go up.



    In practical and considerably oversimplified terms, this means that if 2000 was the year of global Peak Oil, worldwide oil production in the year 2020 will be the same as it was in 1980. However, the world’s population in 2020 will be both much larger (approximately twice) and much more industrialized (oil-dependent) than it was in 1980. Consequently, worldwide demand for oil will outpace worldwide production of oil by a significant margin. As any economist will tell you, when demand outstrips supply, the price will zoom.




    The issue is not one of "running out" so much as it is not having enough to keep our economy running. In this regard, the ramifications of Peak Oil for our civilization are simliar to the ramifications of dehydration for the human body. The human body is 70 percent water. The body of a 200 pound man thus holds 140 pounds of water. Because water is so crucial to everything the human body does, the man doesn't need to lose all 140 pounds of water weight before collapsing due to dehyrdration. A loss of as little as 10-15 pounds of water may be enough to kill him.



    In a similiar sense, an oil-based economy such as ours doesn't have to deplete its entire reserves of oil before it begins to collapse. Once the shortfall between demand and supply gets beyond 10-15 percent, all hell is going to break lose.



    To understand the nature of the coming crisis, you need to understand what geologists called the "Hubbert Peak," named for the Shell geologist Dr. Marion King Hubbert who in 1956 accurately predicted that US domestic oil production would peak in 1970.



    All oil production follows a bell curve, whether in an individual field, a country, or on the planet as a whole.



    Oil is increasingly plentiful on the upslope of the bell curve, increasingly scarce and expensive on the down slope. The peak of the curve coincides with the point at which the endowment of oil has been 50 percent depleted. Once the peak is passed, oil production begins to go down while cost begins to go up.
    In practical and considerably oversimplified terms, this means that if 2000 was the year of global Peak Oil, worldwide oil production in the year 2020 will be the same as it was in 1980. However, the world’s population in 2020 will be both much larger (approximately twice) and much more industrialized (oil-dependent) than it was in 1980. Consequently, worldwide demand for oil will outpace worldwide production of oil by a significant margin. As any economist will tell you, when demand outstrips supply, the price will zoom.


    SO THIS IS GOING TO BE WORSE THAN THE 1970´S?

    Yes, far worse. The oil shock of 1979, for instance, occurred when Iran cut its oil production by 1 million barrels per day, creating a shortfall in the world's oil supply of less than five percent. This was enough to send the world economy into a severe recession.



    Luckily, at the time, there were other swing producers such as Venezuela who stepped in to alleviate the crisis. Once world production peaks, however, there won't be any swing producers to turn to. The crisis will not be alleviated. It will just get worse with each passing year.



    Furthermore, the coming shortfall in oil supply will eclipse the shortfalls seen during the politically-created oil shocks of the 1970's.

    "PEAK OIL = ECONOMIC HIROSHIMA"

    According to conservative estimates, once we pass the peak, oil production will decline by 1.5-3 percent per year. However, the decline is more likely to be over 5 percent per year. The reserves in the world’s super-giant and giant oilfields, for instance, are already dwindling at an average rate of 4-6 percent a year.



    Many countries are seeing their oil production drop at an even faster rate. For instance, Gabon, whose production peaked in 1996, saw its production drop by an alarming 18 percent last year. Australia saw its production drop more than 14 percent in 2003, while UK production from the North Sea declined by 9 percent, and Indonesia (an OPEC country) saw its production drop by 8.5 percent.



    This means that within 10 short years of the peak, a drop in global oil production of 40-60 percent is not completely out of the realm of possibility. If we’re extraordinarily lucky, and all current trends are bucked, production may drop by only 25 percent in the 10 years following the peak. This is still an absolutely huge amount given the importance of oil to the world economy.



    The effects of the physical drop in production will almost certainly be exacerbated by disruptions in supply resulting from war and terrorism, as an increasing percentage of the world’s oil supply will be coming from unstable countries like Iraq, Iran, Saudi Arabia, and Nigeria.



    Within the next 4-8 years, the price is likely to soar into the $100-$200 range. As a result, oil companies will be motivated to find and extract what little recoverable oil is left. For a while, their efforts will be successful, and the world economy will stumble along the bumpy “petroleum-plateau.”



    Unfortunately, this final frenzy or exploration and extraction will deplete the world’s oil reserves faster than anyone anticipated. Consequently, the second half of the oil production bell curve will resemble a cliff. As production plummets, prices will soar into the $200-$400-per-barrel range. Massive dislocations in the world economy will erupt, giving way to resource conflicts unlike anything we have ever imagined.

    "THERE ARE ALTERNATIVES, RIGHT?"
    Not really. The ability of renewable energy to replace oil is based more in myth and fantasy than science and reality.



    Oil has had an Energy Profit Ratio as high as 100 to 1. This means it takes one unit of energy to produce 100 units. None of the alternatives have EPR's that even approach that of oil. Some of the alternatives, such as Hydrogen are energy losers, while others, such as biodiesel, barely break even.



    The problem with these alternatives is not one of technical feasibility. They do work. The problem is they do not work anywhere near as well as oil. Even in the best of circumstances, they cannot produce anywhere near enough net energy to fuel even a fraction of our current oil-powered economy.



    The world currently uses 30 billion barrels of oil per year. To keep the economy moving along, we need about an additional one billion barrels per year.



    If we get tremendous political will, unprecedented bipartisan and international cooperation, massive financial investment, and a dozen or so major technological breakthroughts, we might be able to get the energy equivalent of three to five billion barrels per year from alternative sources by 2025-2050.



    Three to five billion barrels of oil is a tremendous amount of energy - about the amount the entire world used per year during the early years of World War II.



    Unfortunately, because of our massive and constantly increasing demand for the stuff, the energy equivalent of three to five billion barrels of oil is just a "drop in the bucket."



    Furthermore, almost every advocate of alternative energy fails to realize two absolutely key points:



    1. It takes a tremendous amount of oil to build alternatives to oil suchas solar panels, windmills, and nuclear power plants.



    2. It would take even more oil to retrofit our multi-trillion dollar, fossil fuel based infrastructure to run on these alternative sources of energy.

    "CAN´T WE INVENT OUR WAT OUT OF THIS?"

    Unfortunately, it is not that simple. We have a multi-trillion dollar infrastructure powered almost exclusively by fossil-fuels. Cars, trucks, roads, boats, docks, airplanes, airports, hospitals, schools, farms, manufacturing plants, food processing centers, water treatment plants - all run on fossil fuels. All plastics, pesticides, and fertilizers are derived from fossil fuels.



    You can't just retrofit the entire economy, or even significant parts of it, to run on an entirely different source of fuel.



    Furthermore, the emergence of a truly viable alternative to oil would be an absolute nightmare for the US economy.



    The US dollar is the reserve currency for all oil transactions in the world - hence the term "petrodollar." This means that whenever oil is bought and sold - anywhere in the world, by anyone - the money exchanged circulates into the US economy. The strength of the US economy is directly tied to the strength of the petrodollar.



    If a truly viable alternative to oil was to emerge, and the nations of the world began to use it, the petrodollar would collapse.



    This would drive the US economy straight into a brick wall and force the US into a series of "currency wars."

    "CAN´T WE JUST CONSERVE ENERGY?"

    Not without instituting a complete financial meltdown. The reason is simple: we have an economy mired in debt: corporate debt, government debt, and consumer debt are all at record levels. In order to finance debt, you need economic growth. Economic growth requires a constantly increasing consumption of consumer goods - most of which are made from plastic, which comes from petroleum (oil) and are delivered by trucks, which consume diesel fuel (oil).



    A truly successful conservation program would require us to drastically cut our consumption of consumer goods, which would halt economic growth dead in its tracks. This would cause indebted corporations, governments, and individuals to all slide towards bankruptcy. Banks would call in outstanding debts, businesses would close, government services would cease, and people would lose their jobs. The Great Depression would begin to look like the "good old days."

    "THE GOVERNMENT HAS A PLAN TO DEAL WITH THIS, RIGHT?"

    Yes. We can't invent or conserve our way out of this. As far as the US government is concerned, this leaves us with one option: fight and die for every last drop.



    A report commissioned by Dick Cheney and released in April 2001 outlined the US plan to deal with the coming oil shortages. As the Sunday Herlad reported:



    "The report explained that the 'central dilemma' for the US administration is that 'the American people continue to demand plentiful and cheap energy without sacrifice or inconvenience.' It warned that the US is running out of oil, with a painful end to cheap fuel already in sight."



    "It argued that the 'United States remains a prisoner of its energy dilemma,' and that one of the 'consequences' of this is a 'need for military intervention" to secure its oil supply.'"



    The level of military intervention necessary to secure the quantity of oil we need will require a large-scale reinstitution of the military draft.



    To this end, the Pentagon has already posted a notice on its website asking for "men and women in the community who might be willing to serve as members of a local draft board." A process the military calls "Draft-Creep" is already underway. Several proposals to reinstate the draft are currently circulating in Congress. In addition, the Director of the Selective Service has proposed the draft be expanded to include all men and women ages18-34.



    The fact that a large-scale military draft is planned for the Fall of 2005 has now been confirmed by the ultra-conservative website NewsMax.com.



    Unfortunately, electing John Kerry won't stop the draft. He has all but promised to reinstate the draft if elected president.

    "WHAT WILL THINGS BE LIKE ON THE HOMEFRONT?"

    Without an abundant supply of cheap energy, transportation and food delivery systems will break down.Electrical grids will collapse. Unemployment levels will skyrocket. Consumer goods will only be available to the super-rich. Food and water will become desperately sought after commodities. Riots and urban uprisings will become common.



    Ultimately, the government may have no choice but to implement some of the more draconian provisions of the Patriot Act and related legislation in hopes of maintaining order.

    "HARD TO BELIEVE? DO A GOOGLE SEARCH"

    When you're done looking through this site, I encourage you to do a google search for "Peak Oil," in addition to reading the links I've provided throughout this page.



    You will find, much to your dismay as well as my own, that everything on this site is backed up by reputable sources, hard science, and undeniable fact.



    Furthermore, you don't need to go further than the morning paper or nightly news to see the predictions of Peak Oil "doomsayers" coming true at a disturbingly rapid rate. The crash is already under way and you are running out of time to get informed.

    Sincerely,





    Matt Savinar

    Last Updated: 9/29/2004











  2. #2
    Senior Member
    lahun-ok's Avatar
    Join Date
    Oct 2004
    Last Online
    Saturday, February 19th, 2005 @ 12:47 PM
    Subrace
    Nordid
    Gender
    Politics
    nationalsocialist
    Religion
    Tiuz
    Posts
    62
    Thanks Thanks Given 
    0
    Thanks Thanks Received 
    1
    Thanked in
    1 Post

    Post The Olduvai Gorge

    THE PEAK OF WORLD OIL PRODUCTION AND THE ROAD TO THE OLDUVAI GORGE

    Richard C. Duncan, Ph.D.1

    Pardee Keynote Symposia
    Geological Society of America
    Summit 2000
    Reno, Nevada
    November 13, 2000

    ABSTRACT

    The Olduvai theory has been called unthinkable, preposterous, absurd, dangerous, self-fulfilling, and self-defeating. I offer it, however, as an inductive theory based on world energy and population data and on what I’ve seen during the past 30 years in some 50 nations on all continents except Antarctica. It is also based on my experience in electrical engineering and energy management systems, my hobbies of anthropology and archaeology, and a lifetime of reading in various fields.

    The theory is defined by the ratio of world energy production (use) and world population. The details are worked out. The theory is easy. It states that the life expectancy of Industrial Civilization is less than or equal to 100 years: 1930-2030.

    World energy production per capita from 1945 to 1973 grew at a breakneck speed of 3.45 %/year. Next from 1973 to the all-time peak in 1979, it slowed to a sluggish 0.64 %/year. Then suddenly —and for the first time in history — energy production per capita took a long-term decline of 0.33 %/year from 1979 to 1999. The Olduvai theory explains the 1979 peak and the subsequent decline. More to the point, it says that energy production per capita will fall to its 1930 value by 2030, thus giving Industrial Civilization a lifetime of less than or equal to 100 years.

    Should this occur, any number of factors could be cited as the 'causes' of collapse. I believe, however, that the collapse will be strongly correlated with an 'epidemic' of permanent blackouts of high-voltage electric power networks — worldwide. Briefly explained: "When the electricity goes out, you are back in the Dark Age. And the Stone Age is just around the corner."

    The Olduvai theory, of course, may be proved wrong. But, as of now, it cannot be rejected by the historic world energy production and population data.

    1Institute on Energy and Man
    5307 Ravenna Place NE, #1
    Seattle, WA 98105
    duncanrc@halcyon.com

    THE PEAK OF WORLD OIL PRODUCTION AND THE ROAD TO THE OLDUVAI GORGE

    Richard C. Duncan, Ph.D.1

    Pardee Keynote Symposia
    Geological Society of America
    Summit 2000
    Reno, Nevada
    November 13, 2000

    1. INTRODUCTION

    The Olduvai theory is a data-based schema that states that the life expectancy of Industrial Civilization is less than or equal 100 years. We shall develop the theory from its early roots in Greek philosophy down to respected scientists in the 20th century. This approach is useful because, although the theory is easy to understand, it is difficult (i.e. distressing) for most people to accept — just as it was for me.

    The Olduvai theory deals neither with the geology or the paleontology of the Olduvai Gorge. Nor is it prescriptive. Rather, the theory simply attempts to explain the historic world energy production (and use) and population data in terms of overshoot and collapse. I chose the name "Olduvai" because (1) it is justly famous, (2) I've been there, (3) its long hollow sound is eerie and ominous, and (4) it is a good metaphor for the 'Stone Age way of life'. In fact, the Olduvai way of life was (and still is) a sustainable way of life — local, tribal, and solar — and, for better or worse, our ancestors practiced it for millions of years.



    No doubt that the peak and decline of Industrial Civilization, should it occur, will be due to a complex matrix of causes, such as overpopulation, the depletion of nonrenewable resources, environmental damage, pollution, soil erosion, global warming, newly emerging viruses, and resource wars. That said, the Olduvai theory uses a single metric only, as defined by "White's Law." But now it comes with a new twist — (((a will-o'-the-wisp))) — electricity. Most of my industrial experience is in electric power networks and the energy management systems (EMS) that control them. Electricity is not a primary energy source, but rather an "energy carrier": zero mass, travels near the speed of light, and, for all practical purposes, it can't be stored. Moreover, electric power systems are costly, complex, voracious of fuel, polluting, and require 24h-7d-52w maintenance and operations. Another problem is that electricity is taken for granted. Just flip the switch and things happen. In short: Electricity is the quintessence of the 'modern way of life', but the electric power systems themselves are demanding, dangerous, and delicate. All this suggests that permanent blackouts will be strongly correlated with the collapse of Industrial Civilization — the so-named "Olduvai cliff," discussed later.

    This paper is the backup for the accompanying slide show titled "The Olduvai Theory: An Illustrated Guide" (see Duncan, 2000c).

    Definitions:</EM> ‘Oil’ (O) means crude oil and natural gas liquids. 'Energy' (E) means the primary sources of energy — specifically oil, gas, coal, and nuclear & hydropower. 'Pop' means world population. 'ô' means oil production per capita. 'ê' means energy production per capita. ‘G’ means billion (10^9). ‘b’ means barrels of oil. 'boe' means barrels of oil equivalent (energy content, not quality). 'J' means joule. 'Industrial Civilization' and 'Electrical Civilization', as we shall see, mean the same thing.

    Industrial Civilization is shown as a pulse-shaped curve of world average energy-use per capita (ê). The 'life expectancy' (i.e. 'duration') of Industrial Civilization is defined as the time (in years) between the upside point when ê reaches 30% of its peak value and the corresponding downside point when ê falls to the same value (Figure 4). The new twist is that the Olduvai theory now focuses on the mounting problems with the high-voltage electric power networks — worldwide.

    Civilization and Ready Kilowatt: Although the fossil fuels are still very important, electricity is the indispensable end-use energy for Industrial Civilization. To determine its importance, it is essential to distinguish between the primary energy consumed to generate electricity versus the primary energy consumed for all other (i.e. non-electric) end-uses, such as work and heat. Consider the following. We estimate that 42% of the world's primary energy in 1999 was consumed to generate electricity. This compares to oil's contribution to all non-electric end-uses of 39%; gas' contribution of 18%; and coal's contribution of a mere 1%. Moreover: When energy quality is accounted for, then the importance of electricity becomes very, VERY clear. For example, if you want to heat your room, then 1 joule (J) of coal is 'equal' to 1 J of electricity. However, if you want to power up your TV, then 1 J of electricity is 'equal' to 3 J of coal! So if you're going to worry about energy, then don't loose sleep over oil, gas, and coal. Worry about the electric switch on the wall!

    2. ENERGY AND CIVILIZATION


    Other factors remaining constant, culture evolves as the amount of energy harnessed per capita per year is increased, or as the efficiency of the instrumental means of putting the energy to work is increased. … We may now sketch the history of cultural development from this standpoint.

    Leslie White, 1949
    "White's Law"
    Oil is liquid, power packed, and portable. It is the major primary source of energy for Industrial Civilization. (But not the major end-use source!) We have developed a new method of modeling and simulation and then used it to make a series of five forecasts of world oil production — one new forecast every year. Figure 1 shows the main results of our most recent forecast, i.e. Forecast #5. (Duncan, 2000b)




    Figure 1. World, OPEC, and Non-OPEC Oil Production

    Notes: (1) World oil production is forecast to peak in 2006. (2) The OPEC/non-OPEC crossover event occurs in 2008. (3) The OPEC nations' rate of oil production from 1985 to 1999 increased by 9.33 times that of the non-OPEC nations.
    Figure 1 shows the historic world oil production data from 1960 to 1999 and our forecasts from 2000 to 2040. Note that the overall growth rate of oil production slowed from 1960 to 1999 (curve 1). In detail: The average rate of growth from 1960 to 1973 was a whopping 6.65 %/year. Next, from 1973 to 1979 growth slowed to 1.49 %/year. Then, from 1979 to 1999, it slowed yet further to a glacial 0.75 %/year. Moving beyond the historic period, Forecast #5 predicts that world oil production will reach its all-time peak in 2006. Then from its peak in 2006 to year 2040 world oil production will fall by 58.8 % — an average decline of 2.45 %/year during these 34 years.

    The OPEC/non-OPEC crossover event is predicted to occur in 2008 (Figure 1, curves 2 &3). This event will divide the world into two camps: one with surplus oil, the other with none. Forecast #5 presents the following scenario. (1) Beginning in 2008 the 11 OPEC nations will produce more than 50% of the world's oil. (2) Thereafter OPEC will control nearly 100% of the world’s oil exports. (3) BP Amoco (2000) puts OPEC's "proved reserves" at 77.6% of the world total. (4) OPEC production from 1985 to 1999 grew at a strong average rate of 3.46 %/year. In contrast, non-OPEC production grew at sluggish 0.37 %/year during this same 14-year period.

    The oil forecasting models, the application program to run them, and a User's Guide are all available free at www.halcyon.com/duncanrc/. (Duncan, 2000a)

    The peak of world oil production (2006) and the OPEC/non-OPEC crossover event (2008) are important to the 'Olduvai schema', discussed later. But first let's have a look at the ratio of world oil production and world population. Figure 2 shows the historic data.

    Figure 2. World Average Oil Production per Capita: 1920-1999


    Notes: (1) World average oil production per capita (ô) grew exponentially from 1920 to 1973. (2) Next, the average growth rate was near zero from 1973 to the all-time peak in 1979. (3) Then from its peak in 1979 to 1999, ô decreased strongly by an average of 1.20 %/year. (4) Typical response: "I didn't know that!" (5) The little cartoons emphasize that oil is by far the major primary source of energy for transportation (i.e. about 95% of the oil produced in 1999 was used for transportation).
    Figure 2 shows the world average oil production per capita from 1920 to 1999. The curve represents the ratio of world oil production (O) and world population (Pop): i.e. ô = O/(Pop) in barrels per capita per year (i.e. b/c/year). Note well that ô grew exponentially from 1920 to 1973. Next, growth was negligible from 1973 to the all-time peak in 1979. Finally, from its peak in 1979 to 1999, ô decreased at an average rate of 1.20 %/year (i.e. from 5.50 b/c in 1979 to 4.32 b/c in 1999). "You've gotta be kidding!"

    The 1979 peak and decline of world oil production per capita are shown on page 11 of BP Amoco (2000), http://www.bp.com/centres/energy/ . Not to be missed.

    Bottom Line: Although world oil production (O) from 1979 to 1999 increased at an average rate of 0.75 %/year (Figure 1), world population (Pop) grew even faster. Thus world oil production per capita (ô) declined at an average rate of 1.20 %/year during the 20 years from 1979 to 1999 (Figure 2).

    The main goals in this study, as was mentioned, are to describe, discuss, and test the Olduvai theory of Industrial Civilization against historic data. Applying White's Law, our metric (i.e. indicator) is the ratio of world total energy production (E) and world population (Pop): i.e. ê = E/(Pop). Figure 3 shows ê during the historic period.

    Figure 3. World Energy Production per Capita: 1920-1999
    Notes: (1) World average energy production per capita (ê) grew significantly from 1920 to its all-time peak in 1979. (2) Then from its peak in 1979 to 1999, ê declined at an average rate of 0.33 %/year. This downward trend is the "Olduvai slope", discussed later. (3) The tiny cartoons emphasize that the delivery of electricity to end-users is the sin quo non of the 'modern way of life'. Not hydrocarbons.

    Observe the variability of ê in Figure 3. In detail: From 1920 to 1945 ê grew moderately at an average of 0.69 %/year. Then from 1945 to 1973 it grew at the torrid pace of 3.45 %/year. Next, from 1973 to the all-time peak in 1979, growth slowed to 0.64 %/year. But then suddenly — and for the first time in history — ê began a long-term decline extending from 1979 to 1999. This 20-year period is named the "Olduvai slope," the first of the three downside intervals in the "Olduvai schema."

    Bottom Line: Although world energy production (E) from 1979 to 1999 increased at an average rate of 1.34 %/year, world population (Pop) grew even faster. Thus world energy production per capita (ê) declined at an average rate of 0.33 %/year during these same 20 years (Figure 3). See White's Law, top of this section.

    Acknowledgments: As far as I know, credit goes to Robert Romer (1985) for being first to publish the peak-period data for world energy production per capita (ê) from 1900 to 1983. He put the peak (correctly!) in 1979, followed by a sharp decline through 1983, the last year of his data. Credit is also due to John Gibbons, et al. (1989) for publishing a graph of ê from 1950 to 1985. Gibbons, et al. put the peak in 1973. But curiously, neither of the above studies made any mention whatever about the importance of the peak and decline of world energy production per capita.

    The 1979 peak and decline of world energy production per capita (ê) is shown at http://www.bp.com/centres/energy/ . Have a look.

    3. EVOLUTION OF AN IDEA

    And what a glorious society we would have if men and women would regulate their affairs, as do the millions of cells in the developing embryo.
    Hans Spemann, 1938
    The seeds of the Olduvai Theory were planted long ago. For example, the Greek lyric poet Pindar (c. 522-438 BCE) wrote, "What course after nightfall? Has destiny written that we must run to the end?" (Eiseley, 1970)

    Arabic scholar Ibn Khaldun (1332-1406) regarded "group solidarity" as the primary requisite for civilization. "Civilization needs the tribal values to survive, but these very same values are destroyed by civilization. Specifically, urban civilization destroys tribal values with the luxuries that weaken kinship and community ties and with the artificial wants for new types of cuisine, new fashions in clothing, larger homes, and other novelties of urban life." (Weatherford, 1994)

    Joseph Granvill in 1665 observed that, although energy-using machines made life easier, they also made it more dependent. "For example, if artificial demands are stimulated, than resources must be consumed at an ever-increasing pace." (Eiseley, 1970)

    But, as far as I know, it was the American adventurer and writer Washington Irving (1783-1859) who was first to realize that civilization could quickly collapse.

    Nations are fast losing their nationality. The great and increasing intercourse, the exchange of fashions and uniformity of opinions by the diffusion of literature are fast destroying those peculiarities that formerly prevailed. We shall in time grow to be very much one people, unless a return to barbarism throws us again into chaos. (Irving, 1822)

    The first statement that I've found that Industrial Civilization is likely to collapse into a primitive mode came from the mathematical biologist Alfred Lotka.

    The human species, considered in broad perspective, as a unit including its economic and industrial accessories, has swiftly and radically changed its character during the epoch in which our life has been laid. In this sense we are far removed from equilibrium — a fact that is of the highest practical significance, since it implies that a period of adjustment to equilibrium conditions lies before us, and he would be an extreme optimist who should expect that such adjustment can be reached without labor and travail. … While such sudden decline might, from a detached standpoint, appear as in accord with the eternal equities, since previous gains would in cold terms balance the losses, yet it would be felt as a superlative catastrophe. Our descendants, if such as this should be their fate, will see poor compensation for their ills and in fact that we did live in abundance and luxury. (Lotka, 1925)
    Polymath Norbert Wiener (1894-1964) wrote in 1950 that the best we can hope for the role of progress is that "our attempts to progress in the face of overwhelming necessity may have the purging terror of Greek tragedy."

    [America's] resources seemed inexhaustible [in 1500] … However, the existence of the new lands encouraged an attitude not unlike that of Alice's Mad Tea party. When the tea and cakes were exhausted at one seat, the natural thing … was to move on and occupy the next seat. … As time passed, the tea table of the Americas had proved not to be inexhaustible … What many of us fail to realize is that the last four hundred years are a highly special period in the history of the world. … This is partly the result of increased communication, but also of an increased mastery of nature which, on a limited planet like the earth, may prove in the long run to be an increased slavery to nature. (Wiener, 1950)
    Sir Charles Galton Darwin wrote in 1953:

    The fifth revolution will come when we have spent the stores of coal and oil that have been accumulating in the earth during hundreds of millions of years. … It is to be hoped that before then other sources of energy will have been developed, … but without considering the detail [here] it is obvious that there will be a very great difference in ways of life. … Whether a convenient substitute for the present fuels is found or not, there can be no doubt that there will have to be a great change in ways of life. This change may justly be called a revolution, but it differs from all the preceding ones in that there is no likelihood of its leading to increases of population, but even perhaps to the reverse. (Darwin, 1953)
    Sir Fred Hoyle in 1964 put it bluntly.

    It has often been said that, if the human species fails to make a go of it here on the Earth, some other species will take over the running. In the sense of developing intelligence this is not correct. We have or soon will have, exhausted the necessary physical prerequisites so far as this planet is concerned. With coal gone, oil gone, high-grade metallic ores gone, no species however competent can make the long climb from primitive conditions to high-level technology. This is a one-shot affair. If we fail, this planetary system fails so far as intelligence is concerned. The same will be true of other planetary systems. On each of them there will be one chance, and one chance only. (Hoyle, 1964)
    4. WORLD MODELS, ETC.

    Perhaps the most widespread evil is the Western view of man and nature. Among us, it is widely believed that man is apart from nature, superior to it; indeed, evolution is a process to create man and seat him on the apex of the cosmic pinnacle. He views the earth as a treasury that he can plunder at will. And, indeed, the behavior of Western people, notably since the advent of the Industrial Revolution, gives incontrovertible evidence to support this assertion.
    Ian McHarg, 1971
    Jay Forrester of MIT in 1970 built a world model "to understand the options available to mankind as societies enter the transition from growth to equilibrium."

    What happens when growth approaches fixed limits and is forced to give way to some form of equilibrium? Are there choices before us that lead to alternative world futures? … Exponential growth does not continue forever. Growth of population and industrialization will stop. If man does not take conscious action to limit population and capital investment, the forces inherent in the natural and social system will rise high enough to limit growth. The question is only a matter of when and how growth will cease, not whether it will cease. (Forrester, 1971)
    The basic behavior of Forrester's world model was overshoot and collapse. It projected that the material standard of living (MSL) would peak in 1990 and then decline through the year 2100. Moreover, measured by the MSL (i.e. the leading and lagging 30% points), the life expectancy of Industrial Civilization was about 210 years. (Forrester, 1971, Figure 4-2). He used the world model to search for social (i.e. cultural, "conscious action") policies for making the transition to sustainability.

    In our social systems, there are no utopias. No sustainable modes of behavior are free of pressures and stresses. … But to develop the more promising modes will require restraint and dedication to a long-range future that man may not be capable of sustaining. Our greatest challenge now is how to handle the transition from growth into equilibrium. The industrial societies have behind them long traditions that have encouraged and rewarded growth. The folklore and the success stories praise growth and expansion. But that is not the path of the future. (ibid., 1971)
    He found that sustainability could be achieved in the modeled world system when the following five social policies were applied together in 1970:
    • Natural-resource-usage-rate reduced 75%
    • Pollution generation reduced 50%
    • Capital-investment generation reduced 40%
    • Food production reduced 20%
    • Birth rate reduced 30% (ibid., 1971)
    Critics (mostly economists) argued that such policies were e.g. "blue sky" and "unrealistic". Fortunately, the project team was just then completing a two-year study using the more comprehensive 'World3' model. They too searched for social policies that might achieve sustainability in the world system. However, the World3 'reference run' (like Forrester's in 1971) also projected overshoot and collapse of the world system.

    This is the World3 reference run, …. Both population POP and industrial output per capita IOPC grow beyond sustainable levels and subsequently decline. The cause of their decline is traceable to the depletion of nonrenewable resources. </EM>(Meadows, et al, 1972, Figure 35)
    The World3 'reference run' (1972, above) projected that the industrial output per capita (IOPC) would reach its all-time peak in 2013 and then would steeply decline through 2100. Moreover, the duration of Industrial Civilization (as measured by the leading and lagging IOPC 30% points) came out to be about 105 years.

    I first presented the Olduvai theory to the public in 1989.

    • The broad sweep of human history can be divided into three phases.
    • The first, or pre-industrial phase was a very long period of equilibrium when simple tools and weak machines limited economic growth.
    • The second, or industrial phase was a very short period of non-equilibrium that ignited with explosive force when powerful new machines temporarily lifted all limits to growth.
    • The third, or de-industrial phase lies immediately ahead during which time the industrial economies will decline toward a new period of equilibrium, limited by the exhaustion of nonrenewable resources and continuing deterioration of the natural environment. (Duncan, 1989)
    In 1992, twenty years after the first World3 study, the team members re-calibrated the model with the latest data and used it to help "envision a sustainable future." But —

    All that World3 has told us so far is that the model system, and by implication the "real world" system, has a strong tendency to overshoot and collapse. In fact, in the thousands of model runs we have tried over the years, overshoot and collapse has been by far the most frequent outcome. (Meadows, et al., 1992)
    The updated World3 'reference run', in fact, gave almost exactly the same results as it did in the first study in 1972! For example: Industrial output per capita (IOPC) reached its all-time peak in 2014 (v. 2013 previously) and the duration of Industrial Civilization came out to be 102 years (v. 104 years previously).

    Australian writer Reg Morrison likewise foresees that overshoot and collapse is where humanity is headed. In his scenario (i.e. no formal model), the world population rises to about 7.0 billion in the 2036. Thence it plunges to 3.2 billion in 2090 — an average loss of 71.4 million people per year (i.e. deaths minus births) during 54 years.

    Given the current shape of the human population graph, those indicators also spell out a much larger and, from our point of view, more ominous message: the human plague cycle is right on track for a demographically normal climax and collapse. Not only have our genes managed to conceal from us that we are entirely typical mammals and therefore vulnerable to all of evolution's customary checks and balances, but also they have contrived to lock us so securely into the plague cycle that they seem almost to have been crafted for that purpose. Gaia is running like a Swiss watch. (Morrison, 1999)
    The foregoing discussions show that many respected professionals have reached conclusions that are consistent with the Olduvai theory, to which we now turn.

    5. THE OLDUVAI THEORY: 1930-2030

    The earth's immune system, so to speak, has recognized the presence of the human species and is starting to kick in. The earth is attempting to rid itself of an infection by the human parasite.
    Richard Preston, 1994
    The Olduvai theory, to review, states that the life expectancy of Industrial Civilization is less than or equal to one hundred years, as measured by the world average energy production person per year: ê = E/(Pop). Industrial Civilization, defined herein, began in 1930 and is predicted to end on or before the year 2030. Our main goals for this section are threefold: (1) to discuss the Olduvai theory from 1930 to 2030, (2) to identify the important energy events during this time, and (3) to stress that Industrial Civilization = Electrical Civilization = the 'modern way of life.' Figure 4 depicts the Olduvai theory.

    Figure 4. The Olduvai Theory: 1930-2030
    Notes: (1) 1930 => Industrial Civilization began when (ê) reached 30% of its peak value. (2) 1979 => ê reached its peak value of 11.15 boe/c. (3) 1999 => The end of cheap oil. (4) 2000 => Start of the "Jerusalem Jihad". (5) 2006 => Predicted peak of world oil production (Figure 1, this paper). (6) 2008 => The OPEC crossover event (Figure 1). (7) 2012 => Permanent blackouts occur worldwide. (8) 2030 => Industrial Civilization ends when ê falls to its 1930 value. (9) Observe that there are three intervals of decline in the Olduvai schema: slope, slide and cliff — each steeper than the previous. (10) The small cartoons stress that electricity is the essential end-use energy for Industrial Civilization.

  3. #3
    Senior Member
    helsingor's Avatar
    Join Date
    Nov 2004
    Last Online
    Saturday, April 10th, 2010 @ 07:19 AM
    Subrace
    Nordid
    Country
    Canada Canada
    Location
    Hongcouver (Vancouver), Canada
    Gender
    Politics
    Libertarian
    Posts
    34
    Thanks Thanks Given 
    0
    Thanks Thanks Received 
    0
    Thanked in
    0 Posts

    Post Re: Life After The Oil Crash

    There's a equation out there that shows how the population of an organism is proportional to it's resources. With oil and modern agriculture, our species is simply much larger than nature intended and we'll be in for a rude shock when the crash comes.

  4. #4
    Senior Member
    Rey's Avatar
    Join Date
    Jan 2004
    Last Online
    Monday, November 6th, 2006 @ 12:44 AM
    Subrace
    Don't know
    Country
    United States United States
    Location
    New York City, USA
    Gender
    Age
    42
    Occupation
    Self-employed.
    Politics
    Autonomous.
    Religion
    Machiavellian pragmatist.
    Posts
    29
    Thanks Thanks Given 
    0
    Thanks Thanks Received 
    0
    Thanked in
    0 Posts

    Post Re: Life After The Oil Crash

    The million-dollar question is: Where is the best place to be when it all comes down?

    Good luck to us all.
    ######################################
    The Free State Project (www.freestateproject.org)
    OpenBSD (www.openbsd.com)
    ######################################

Similar Threads

  1. 1,238 Billion Barrels of Oil Reserves: Is This an Oil Price Bubble?
    By Hanna in forum Economics, Business, & Finance
    Replies: 3
    Last Post: Monday, July 14th, 2008, 04:04 AM
  2. Server Crash
    By Aeternitas in forum Rules & Announcements
    Replies: 13
    Last Post: Sunday, February 4th, 2007, 07:37 PM
  3. I have just been involved in a car crash !
    By nordicdusk in forum The Hearth
    Replies: 34
    Last Post: Sunday, July 9th, 2006, 01:24 PM
  4. Why Computers Sometimes Crash! by Dr. Seuss.
    By Vanir in forum Internet, Security, & Privacy
    Replies: 0
    Last Post: Thursday, June 2nd, 2005, 08:18 PM
  5. Server Crash
    By Thorburn in forum Rules & Announcements
    Replies: 0
    Last Post: Saturday, November 8th, 2003, 02:20 AM

Bookmarks

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •